4.3 Maxima and Minima

4.3.1 Introduction

In this chapter we shall study those points of the domain of a function where its graph changes its direction from upwards to downwards or from downwards to upwards. At such points the derivative of the function arily zero.

4.3.2 Maximum and Minimum Values of a Function

By the maximum / minimum value of function f(x) we should mean local or regional maximum/minimum and not the greatest / least value attainable by the function. It is also possible in a function that local maximum at one point is smaller than local minimum at another point. Sometimes we use the word extreme for maxima and minima.

Definition: A function f(x) is said to have a maximum at x = a if f(a) is greatest of all values in the suitably small neighbourhood of a where x = a is an interior point in the

domain of f(x). Analytically this means $f(a) \ge f(a+h)$ and $f(a) \ge f(a-h)$ where $h \ge 0$. (very small quantity).

Similarly, a function y = f(x) is said to have a minimum at x = b. If f(b) is smallest of all values in the suitably small neighbourhood of *b* where x = b is an interior point in the domain of f(x). Analytically, $f(b) \le f(b+h)$ and $f(b) \le f(b-h)$ where $h \ge 0$. (very small quantity).

CLICK HERE

f(a-h)

Increasi

f(a+h)lecreasi

Íncreasin

f(b+h) b b+h

Hence we find that,

(i)
$$x = a$$
 is a maximum point of $f(x)$

$$\begin{cases}
f(a) - f(a+h) > 0 \\
f(a) - f(a-h) > 0
\end{cases}$$
(ii) $x = b$ is a minimum point of $f(x)$

$$\begin{cases}
f(b) - f(b+h) < 0 \\
f(b) - f(b-h) < 0
\end{cases}$$

(iii) x = c is neither a maximum point nor a minimum p $\begin{cases} f(c) - f(c+h) \text{ and} \\ f(c) - f(c-h) \end{cases}$ have opposite signs.

4.3.3 Local Maxima and Local Minima

(1) **Local maximum :** A function f(x) is said to attain a local maximum at x = a if there exists a neighbourhood $(a - \delta, a + \delta)$ of a such that f(x) < f(a) for all $x \in (a - \delta, a + \delta), x \neq a$

or f(x) - f(a) < 0 for all $x \in (a - \delta, a + \delta), x \neq a$.

In such a case f(a) is called the local maximum value of f(x) at x = a.

(2) **Local minimum:** A function f(x) is said to attain a local minimum at x = a if there exists a neighbourhood $(a - \delta, a + \delta)$ of a such that

f(x) > f(a) for all $x \in (a - \delta, a + \delta), x \neq a$

or

$$f(x) - f(a) > 0$$
 for all $x \in (a - \delta, a + \delta), x \neq a$

f(x)

The value of function at x = a *i.e.*, f(a) is called the local minimum value of f(x) at x = a.

The points at which a function attains either the local maximum values or local minimum values are known as the extreme points or turning points and both local maximum and local

minimum values are called the extreme values of f(x). Thus, a function attains an extreme value at x = a if f(a) is either a local maximum value or a local minimum value. Consequently at an extreme point '*a*' f(x) - f(a) keeps the same sign for all values of *x* in a deleted *nbd* of *a*.

In fig. we observe that the *x*-coordinates of the points *A*, *C*, *E* are points of local maximum and the values at these points *i.e.*, their *y*-coordinates are the local maximum values of f(x). The *x*-coordinates

🕀 www.studentbro.in

of points *B* and *D* are points of local minimum and their *y*-coordinates are the local minimum values of f(x).

CLICK HERE

🕀 www.studentbro.in

- *Note* : \Box By a local maximum (or local minimum) value of a function at a point x = a we mean
 - the greatest (or the least) value in the neighbourhood of point x = a and not the absolute maximum (or the absolute minimum). In fact a function may have any number of points of local maximum (or local minimum) and even a local minimum value may be greater than a local maximum value. In fig. the minimum value at *D* is greater than the maximum value at *A*. Thus, a local maximum value may not be the greatest value and a local minimum value may not be the least value of the function in its domain.
 - □ The maximum and minimum points are also known as extreme points.
 - □ A function may have more than one maximum and minimum points.
 - \Box A maximum value of a function f(x) in an interval [a, b] is not necessarily its greatest value in that interval. Similarly, a minimum value may not be the least value of the function. A minimum value may be greater than some maximum value for a function.
 - □ If a continuous function has only one maximum (minimum) point, then at this point function has its greatest (least) value.
 - □ Monotonic functions do not have extreme points.

4.3.4 Conditions for Maxima and Minima of a Function

(1) Necessary condition: A point x = a is an extreme point of a function f(x) if f'(a) = 0, provided f'(a) exists. Thus, if f'(a) exists, then

$$x = a$$
 is an extreme point $\Rightarrow f'(a) = 0$
or
 $f'(a) \neq 0 \Rightarrow x = a$ is not an extreme point

But its converse is not true *i.e.*, f'(a) = 0, x = a is not an extreme point.

For example if $f(x) = x^3$, then f'(0) = 0 but x = 0 is not an extreme point.

(2) Sufficient condition:

(i) The value of the function f(x) at x = a is maximum, if f'(a) = 0 and f''(a) < 0.

(ii) The value of the function f(x) at x = a is minimum if f'(a) = 0 and f''(a) > 0.

Note : \Box If f'(a) = 0, f''(a) = 0, $f'''(a) \neq 0$ then x = a is not an extreme point for the function f(x).

□ If f'(a) = 0, f''(a) = 0, f''(a) = 0 then the sign of $f^{(iv)}$ (a) will determine the maximum and minimum value of function *i.e.*, f(x) is maximum, if $f^{(iv)}(a) < 0$ and minimum if $f^{(iv)}(a) > 0$.

4.3.5 Working rule for Finding Maxima and Minima

(1) Find the differential coefficient of f(x) with respect to x, *i.e.*, f'(x) and equate it to zero.

(2) Find differential real values of x by solving the equation f'(x) = 0. Let its roots be a, b, c.....

(3) Find the value of f''(x) and substitute the value of a_1, a_2, a_3, \dots in it and get the sign of f''(x) for each value of x.

(4) If f''(a) < 0 then the value of f(x) is maximum at x = a and if f''(a) > 0 then value of f(x) will be minimum at x = a. Similarly by getting the signs of f''(x) at other points *b*, *c*.....we can find the points of maxima and minima.

Example: 1 What are the minimum and maximum values of the function $x^5 - 5x^4 + 5x^3 - 10$ [DCE 1999; Rajasthan PET 1995]

(c) It has 2 minimum and 1 maximum values (d) It has 2 maximum and 1 minimum values

 $y = x^5 - 5x^4 + 5x^3 - 10$ **Solution:** (a) $\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 15x^2 = 5x^2(x^2 - 4x + 3) = 5x^2(x - 3)(x - 1)$ $\frac{dy}{dx} = 0$, gives x = 0, 1, 3.....(i) Now, $\frac{d^2y}{dx^2} = 20x^3 - 60x^2 + 30x = 10x(2x^2 - 6x + 3)$ and $\frac{d^3y}{dx^3} = 10(6x^2 - 12x + 3)$ For x = 0: $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 0$, $\frac{d^3y}{dx^3} \neq 0$, \therefore Neither minimum nor maximum For x = 1, $\frac{d^2y}{dx^2} = -10$ =negative, \therefore Maximum value $y_{\text{max.}} = -9$ For x = 3, $\frac{d^2y}{dx^2} = 90$ =positive, \therefore Minimum value $y_{\min} = -37$. The maximum value of $\sin x(1 + \cos x)$ will be at Example: 2 [UPSEAT 1999] (a) $x = \frac{\pi}{2}$ (b) $x = \frac{\pi}{6}$ (c) $x = \frac{\pi}{2}$ (d) $x = \pi$ $y = \sin x(1 + \cos x) = \sin x + \frac{1}{2}\sin 2x$ Solution: (c) $\therefore \frac{dy}{dx} = \cos x + \cos 2x$ and $\frac{d^2y}{dx^2} = -\sin x - 2\sin 2x$ On putting $\frac{dy}{dx} = 0$, $\cos x + \cos 2x = 0 \implies \cos x = -\cos 2x = \cos(\pi - 2x) \implies x = \pi - 2x$ $\therefore x = \frac{\pi}{3}, \quad \therefore \quad \left(\frac{d^2 y}{dx^2}\right) = -\sin\left(\frac{1}{3}\pi\right) - 2\sin\left(\frac{2}{3}\pi\right) = \frac{-\sqrt{3}}{2} - 2 \cdot \frac{\sqrt{3}}{2} = \frac{-3\sqrt{3}}{2}$ which is negative. \therefore at $x = \frac{\pi}{3}$ the function is maximum. If $y = a \log x + bx^2 + x$ has its extremum value at x = 1 and x = 2, then $(a,b) = a \log x + bx^2 + x$ Example: 3

CLICK HERE

🕀 www.studentbro.in

Application of Derivatives 205 (b) $\left(\frac{1}{2}, 2\right)$ (c) $\left(2, -\frac{1}{2}\right)$ (a) $\left(1,\frac{1}{2}\right)$ (d) $\left(-\frac{2}{3},-\frac{1}{6}\right)$ **Solution:** (d) $\frac{dy}{dx} = \frac{a}{x} + 2bx + 1 \Rightarrow \left(\frac{dy}{dx}\right) = a + 2b + 1 = 0 \Rightarrow a = -2b - 1$ and $\left(\frac{dy}{dx}\right) = \frac{a}{2} + 4b + 1 = 0 \implies \frac{-2b-1}{2} + 4b + 1 = 0 \implies -b + 4b + \frac{1}{2} = 0 \implies 3b = \frac{-1}{2} \implies b = \frac{-1}{6}$ and $a = \frac{1}{3} - 1 = \frac{-2}{3}$. Maximum value of $\left(\frac{1}{r}\right)^x$ is Example: 4 [DCE 1999; Karnataka CET 1999; UPSEAT 2003] (d) $\left(\frac{1}{e}\right)^{e}$ (a) $(e)^{e}$ (b) $(e)^{1/e}$ (c) $(e)^{-e}$ **Solution:** (b) $f(x) = \left(\frac{1}{x}\right)^x \Rightarrow f'(x) = \left(\frac{1}{x}\right)^x \left(\log\frac{1}{x} - 1\right)$ $f'(x) = 0 \implies \log \frac{1}{x} = 1 = \log e \implies \frac{1}{x} = e \implies x = \frac{1}{e}$. Therefore, maximum value of function is $e^{1/e}$. Maximum slope of the curve $y = -x^3 + 3x^2 + 9x - 27$ is Example: 5 (c) 16 (a) 0 (b) 12 (d) 32 $y = f(x) = -x^3 + 3x^2 + 9x - 27$ Solution: (b) The slope of this curve $f'(x) = -3x^2 + 6x + 9$ Let $g(x) = f'(x) = -3x^2 + 6x + 9$ Differentiate with respect to *x*, g'(x) = -6x + 6Put $g'(x) = 0 \implies x = 1$ Now, g''(x) = -6 < 0 and hence at x = 1, g(x)(Slope) will have maximum value. $\therefore [g(1)]_{\text{max}} = -3 \times 1 + 6 + 9 = 12$. The function $f(x) = \int_{1}^{x} t(e^t - 1)(t - 1)(t - 2)^3(t - 3)^5 dt$ has a local minimum at x =Example: 6 [IIT1999] (b) 1 (c) 2 (a) 0 (d) 3 $f(x) = \int_{-\infty}^{x} t(e^{t} - 1)(t - 1)(t - 2)^{3}(t - 3)^{5} dt , \quad \therefore \quad f'(x) = x(e^{x} - 1)(x - 1)(x - 2)^{3}(x - 3)^{5}$ Solution: (b, d) For local minima, slope *i.e.*, f'(x) should change sign from – *ve* to +*ve* $f'(x) = 0 \implies x = 0, 1, 2, 3$ If x = 0 - h, where *h* is a very small number, then f'(x) = (-)(-)(-1)(-1)(-1) = -veIf x = 0 + h, f'(x) = (+)(+)(-)(-1)(-1) = -veHence at x = 0 neither maxima nor minima. If x = 1 - h, f'(x) = (+)(+)(-)(-1)(-1) = -veIf x = 1 + h, f'(x) = (+)(+)(-1)(-1) = +veHence, at x = 1 there is a local minima. If x = 2 - h, f'(x) = (+)(+1)(+)(-)(-) = +ve

If x = 2 + h, f'(x) = (+)(+)(+)(+)(-1) = -veHence at x = 2 there is a local maxima. If x = 3 - h, f'(x) = (+)(+)(+)(+)(-) = -veIf x = 3 + h, f'(x) = (+)(+)(+)(+)(+) = +veHence at x = 3 there is a local minima. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0 attains its maximum and minimum at p and q Example: 7 respectively such that $p^2 = q$, then a equals (d) $\frac{1}{2}$ (a) 3 (b) 1 (c) 2 $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ **Solution:** (c) $f'(x) = 6x^2 - 18ax + 12a^2$ f''(x) = 12x - 18aFor maximum and minimum, $6x^2 - 18ax + 12a^2 = 0 \implies x^2 - 3ax + 2a^2 = 0$ x = a or x = 2a at x = a maximum and at x = 2a minimum $\therefore p^2 = q$ $a^2 = 2a \implies a = 2$ or a = 0 but a > 0, therefore a = 2. The points of extremum of the function $\phi(x) = \int_{0}^{x} e^{-t^{2}/2} (1-t^{2}) dt$ are Example: 8 (b) x = 1 (c) $x = \frac{1}{2}$ (a) x = 0(d) x = -1 $\phi(x) = \int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt \quad \Rightarrow \ \phi'(x) = e^{-x^{2}/2} (1-x^{2})$ **Solution:** (b,d)

Now $\phi'(x) = 0 \Longrightarrow 1 - x^2 = 0 \Longrightarrow x = \pm 1$

Hence, $x = \pm 1$ are points of extremum of $\phi(x)$.

4.3.6 Point of Inflection

A point of inflection is a point at which a curve is changing concave upward to concave downward or vice-versa. A curve y = f(x) has one of its points x = c as an inflection point, if f''(c) = 0 or is not defined and if f''(x) changes sign as x increases through x = c.

The later condition may be replaced by $f''(c) \neq 0$, when f'''(c)exists.

Thus, x = c is a point of inflection if f''(c) = 0 and $f'''(c) \neq 0$.

Properties of maxima and minima

(i) If f(x) is continuous function in its domain, then at least one maxima and one minima must lie between two equal values of x.

Maxima and minima occur alternately, that is, between two maxima there is one (ii) minimum and vice-versa.

If $f(x) \to \infty$ as $x \to a$ or *b* and f'(x) = 0 only for one value of *x* (say *c*) between *a* and (iii) *b*, then f(c) is necessarily the minimum and the least value.

If $f(x) \to -\infty$ as $x \to a$ or b, then f(c) is necessarily the maximum and the greatest value.

4.3.7 Greatest and Least Values of a Function in a given Interval

If a function f(x) is defined in an interval [*a*, *b*], then greatest or least values of this function occurs either at x = a or x = b or at those values of *x* where f'(x) = 0.

Remember that a maximum value of the function f(x) in any interval [a, b] is not necessarily its greatest value in that interval. Thus greatest value of f(x) in interval $[a, b] = \max$. [f(a), f(b), f(c)]

Least value of f(x) interval [a, b] = min. [f(a), f(b), f(c)]

Where x = c is a point such that f'(c) = 0

The maximum and minimum values of $x^3 - 18x^2 + 96$ in interval (0, 9) are Example: 9 [RPET 1999] (b) 60, 0 (a) 160, 0 (c) 160, 128 (d) 120, 28 **Solution:** (c) Let $y = x^3 - 18x^2 + 96x \Rightarrow \frac{dy}{dx} = 3x^2 - 36x + 96 = 0$:. $x^2 - 12x + 32 = 0 \implies (x - 4)(x - 8) = 0, x = 4, 8$ Now, $\frac{d^2y}{dx^2} = 6x - 36$ at $x = 4, \frac{d^2y}{dx^2} = 24 - 36 = -12 < 0$: at x = 4 function will be maximum and $[f(x)]_{max} = 64 - 288 + 384 = 160$ at $x = 8 \frac{d^2y}{dx^2} = 48 - 36 = 12 > 0$ \therefore at x = 8 function will be minimum and $[f(x)]_{\min} = 128$. The minimum value of the function $2\cos 2x - \cos 4x$ in $0 \le x \le \pi$ is Example: 10 (c) $\frac{3}{2}$ (a) 0 (b) 1 (d) - 3 Solution: (d) $y = 2\cos 2x - \cos 4x = 2\cos 2x(1 - \cos 2x) + 1 = 4\cos 2x\sin^2 x + 1$ Obviously, $\sin^2 x \ge 0$ Therefore, to be least value of *y*, cos 2*x* should be least *i.e.*, – 1. Hence least value of *y* is – 4 + 1 = –3. **Example: 11** On [1, *e*] the greatest value of $x^2 \log x$ [AMU 2002] (b) $\frac{1}{e} \log \frac{1}{\sqrt{e}}$ (c) $e^2 \log \sqrt{e}$ (a) e^2 (d) None of these **Solution:** (a) $f(x) = x^2 \log x \Rightarrow f'(x) = (2 \log x + 1)x$ Now $f'(x) = 0 \implies x = e^{-1/2} \cdot 0$ $\therefore 0 < e^{-1/2} < 1$, \therefore None of these critical points lies in the interval [1,e] \therefore So we only compare the value of f(x) at the end points 1 and e. We have $f(1) = 0, f(e) = e^2$ \therefore greatest value = e^2

4.3.8 Maxima and Minima of Functions of Two Variables

If a function is defined in terms of two variables and if these variables are associated with a given relation then by eliminating one variable, we convert function in terms of one variable and then find maxima and minima by known methods.

CL

Example: 12 x and y be two variables such that x > 0 and xy = 1. Then the minimum value of x + y is [Kurukshetra CEE 1988; MP PET 2002] (a) 2(b) 3 (c) 4 (d) 0 **Solution:** (a) $xy = 1 \implies y = \frac{1}{x}$ and let z = x + y $z = x + \frac{1}{x} \Rightarrow \frac{dz}{dx} = 1 - \frac{1}{x^2} \Rightarrow \frac{dz}{dx} = 0 \Rightarrow 1 - \frac{1}{x^2} = 0 \Rightarrow x = -1, +1 \text{ and } \frac{d^2z}{dx^2} = \frac{2}{x^3}$ $\left(\frac{d^2z}{dx^2}\right) = \frac{2}{1} = 2 = +ve$, $\therefore x = 1$ is point of minima. x = 1, y = 1, \therefore minimum value = x + y = 2. Example: 13 The sum of two non-zero numbers is 4. The minimum value of the sum of their reciprocals is (b) $\frac{6}{5}$ (a) $\frac{3}{4}$ (C) 1 (d) None of these **Solution:** (c) Let x + y = 4 or y = 4 - x $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy}$ or $f(x) = \frac{4}{xy} = \frac{4}{x(4-x)}$ $f(x) = \frac{4}{4x - x^2}$, $f'(x) = \frac{-4}{(4x - x^2)^2} \cdot (4 - 2x)$ Put $f'(x) = 0 \implies 4 - 2x = 0 \implies x = 2$ and y = 2 $\therefore \min \left(\frac{1}{x} + \frac{1}{y}\right) = \frac{1}{2} + \frac{1}{2} = 1$. The real number which most exceeds its cube is Example: 14 [MP PET 2000] (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{2}}$ (a) $\frac{1}{2}$ (d) None of these **Solution:** (b) Let number = x, then cube = x^3 Now $f(x) = x - x^3$ (Maximum) $\Rightarrow f'(x) = 1 - 3x^2$ Put $f'(x) = 0 \implies 1 - 3x^2 = 0 \implies x = \pm \frac{1}{\sqrt{3}}$ Because f''(x) = -6x = -ve. when $x = +\frac{1}{\sqrt{3}}$.

4.3.9 Geometrical Results related to Maxima and Minima

The following results can easily be established.

(1) The area of rectangle with given perimeter is greatest when it is a square.

(2) The perimeter of a rectangle with given area is least when it is a square.

(3) The greatest rectangle inscribed in a given circle is a square.

(4) The greatest triangle inscribed in given circle is equilateral.

(5) The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1}\sqrt{2}$

(6) The height of a cylinder of maximum volume inscribed in a sphere of radius *a* is a $2a/\sqrt{3}$.

Important Tips

Equilateral triangle: Area = $(\sqrt{3}/4)x^2$, where x is its side.

- **Square:** Area = a^2 , perimeter = 4a, where a is its side.
- *r* **Rectangle:** Area = ab, perimeter = 2(a+b), where a, b are its sides.
- Trapezium: Area = $\frac{1}{2}(a+b)h$, where a, b are lengths of parallel sides and h be the distance between them.
- The **Circle:** Area = πa^2 , perimeter = $2\pi a$, where a is its radius.
- **Sphere:** Volume = $\frac{4}{3}\pi a^3$, surface area = $4\pi a^2$, where a is its radius.
- *Right circular cone:* Volume = $\frac{1}{3}\pi r^2 h$, curved surface = $\pi r l$, where r is the radius of its base, h is its height and l is its slant height.
- *T* **Cylinder:** Volume = $\pi r^2 h$, whole surface = $2\pi r(r+h)$, where r is the radius of the base and h is its height.

The adjacent sides of a rectangle with given perimeter as 100 cm and enclosing maximum area are[MP PET a Example: 15 (a) 10 *cm* and 40 *cm* (b) 20 *cm* and 30 *cm* (c) 25 *cm* and 25 *cm* (d) 15 *cm* and 35 *cm* Solution: (c) $2x + 2y = 100 \implies x + y = 50$(i) Let area of rectangle is A, $\therefore A = xy \implies y = \frac{A}{x}$ From (i), $x + \frac{A}{x} = 50 \implies A = 50x - x^2 \implies \frac{dA}{dx} = 50 - 2x$ for maximum area $\frac{dA}{dx} = 0$ \therefore 50 - 2x = 0 \Rightarrow x = 25 and y = 25 \therefore adjacent sides are 25 *cm* and 25 *cm*. The radius of the cylinder of maximum volume, which can be inscribed a sphere of radius R is [AMU 1999] Example: 16 (b) $\sqrt{\frac{2}{2}R}$ (d) $\sqrt{\frac{3}{4}R}$ (c) $\frac{3}{4}R$ (a) $\frac{2}{2}R$ **Solution:** (b) If *r* be the radius and *h* the height, the from the figure, $r^2 + \left(\frac{h}{2}\right)^2 = R^2 \Rightarrow h^2 = 4(R^2 - r^2)$ Now, $V = \pi r^2 h = 2\pi r^2 \sqrt{R^2 - r^2}$ $\therefore \frac{dV}{lr} = 4\pi r \sqrt{R^2 - r^2} + 2\pi r^2 \cdot \frac{1}{2} \frac{(-2r)}{\sqrt{r^2}}$

For max. or min.,
$$\frac{dV}{dr} = 0$$

 $\Rightarrow 4\pi r \sqrt{R^2 - r^2} = \frac{2\pi r^3}{\sqrt{R^2 - r^2}} \Rightarrow 2(R^2 - r^2) = r^2$
 $\Rightarrow 2R^2 = 3r^2 \Rightarrow r = \sqrt{\frac{2}{3}R} \Rightarrow \frac{d^2V}{dr^2} = -ve$. Hence V is max. when $r = \sqrt{\frac{2}{3}R}$.

Example: 17 The ratio of height of a cone having maximum volume which can be inscribed in a sphere with the diameter of sphere is

[MNR 1985]

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{3}$ (c) $\frac{3}{4}$ (d) $\frac{1}{4}$

Solution: (a) Let OM = xThen height of cone *i.e.*, h = x + a (where *a* is radius of sphere) Radius of base of cone $= \sqrt{a^2 - x^2}$ Therefore, volume $V = \frac{1}{3}\pi(a^2 - x^2)(x + a) \Rightarrow \frac{dV}{dx} = \frac{\pi}{3}(a + x)(a - 3x)$ Now, $\frac{dV}{dx} = 0 \Rightarrow x = -a, \frac{a}{3}$ But $x \neq -a$, So, $x = \frac{a}{3}$ The volume is maximum at $x = \frac{a}{3}$ Height of a cone $h = a + \frac{a}{3} = \frac{4}{3}a$ Therefore ratio of height and diameter $= \frac{\frac{4}{3}a}{2a} = \frac{2}{3}$.

Maxima and Minima

1.	The maximum value of $f(x)$	$x = \frac{x}{4 + x + x^2}$ on [-1, 1] is			[MP PET 2000]
	(a) $\frac{-1}{4}$	(b) $\frac{-1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{1}{5}$	
2.	Maximum value of $x(1-x)$	² when $0 \le x \le 2$, is			[MP PET 1997]
	(a) 2	(b) $\frac{4}{27}$	(c) 5	(d) o	
	(d) 2	(b) $\frac{1}{27}$	(0) 5	(u) 0	

CLICK HERE

>>

Basic Level

3. The maximum value of $2x^3 - 24x + 107$ in the interval [-3, 3] is

Get More Learning Materials Here : 💵 👘

			App	olication of Derivatives 211
4.	(a) 75 The maximum value of t	(b) 89 he function $f(x) = 3 \sin x + 4 \cos x$	(c) 125 x is	(d) 139
•	(a) 3	(b) 4	(c) 5	(d) 7
5۰	If the function $f(x) = x^4 - x^4$	$62x^2 + ax + 9$ is maximum at x	x = 1, then the value of a is	
6.	(a) 120 The maximum value of <i>j</i>	(b) - 120 $f(\theta) = a\sin\theta + b\cos\theta$ is	(c) 52	(d) 128 [MP PET 1999; UPSEAT
	(a) $\frac{a}{b}$	(b) $\frac{a}{\sqrt{a^2+b^2}}$	(c) \sqrt{ab}	(d) $\sqrt{a^2 + b^2}$
7.	The minimum value of tl	he function $y = 2x^3 - 21x^2 + 36x$	<i>x</i> −20 is	
	(a) – 128	(b) – 126	(c) - 120	(d) None of these
8.	$\frac{x}{1+x\tan x}$ is maximum a	t		[UPSEAT 1999]
	(a) $x = \sin x$	(b) $x = \cos x$	(c) $x = \frac{\pi}{3}$	(d) $x = \tan x$
9.	The minimum value of the	he expression $7-20x+11x^2$ is		
	(a) $\frac{177}{11}$	(b) $-\frac{177}{11}$	(c) $-\frac{23}{11}$	(d) $\frac{23}{11}$
10.	The minimum value of 2	$4x^{2} + x - 1$ is		[EAMCET 2003]
	(a) $\frac{-1}{4}$	(b) $\frac{3}{2}$	(c) $\frac{-9}{8}$	(d) $\frac{9}{4}$
11.	The maximum value of <i>x</i>	xy subject to $x + y = 8$, is		[MNR 1995]
	(a) 8	(b) 16	(c) 20	(d) 24
12.	If $A + B = \frac{\pi}{2}$, the maximu	Im value of $\cos A \cos B$ is		[AMU 1999]
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) 1	(d) $\frac{4}{3}$
13.	If $xy = c^2$, then minimum	h value of $ax + by$ is		[Rajasthaan PET 2001]
	(a) $c\sqrt{ab}$	(b) $2c\sqrt{ab}$	(c) $-c\sqrt{ab}$	(d) $-2c\sqrt{ab}$
14.	If $a^2x^4 + b^2y^4 = c^6$, then m	naximum value of <i>xy</i> is		[Rajasthan PET 2001]
	(a) $\frac{c^2}{\sqrt{ab}}$	(b) $\frac{c^3}{ab}$	(c) $\frac{c^3}{\sqrt{2ab}}$	(d) $\frac{c^3}{2ab}$
15.	The function $f(x) = 2x^3 - 1$	$15x^2 + 36x + 4$ is maximum at		[Karnataka CET 2001]
	(a) $x = 2$	(b) $x = 4$	(c) $x = 0$	(d) $x = 3$
16.	The function $f(x) = x^{-x}, (x - x)$	$\in R$) attains a maximum value	e at $x =$	
	(a) 2	(b) 3	(c) $\frac{1}{e}$	(d) 1
17.	The function $y = a(1 - \cos x)$	x) is maximum when $x =$		[Kerala (Engg.) 2002]
	(a) <i>π</i>	(b) $\frac{\pi}{2}$	(c) $\frac{-\pi}{2}$	(d) $\frac{-\pi}{6}$
18.	The minimum value of $\left(\left(\left$	$x^2 + \frac{250}{x}$ is		[Haryana CEE 2002]
	(a) 75	(b) 50	(c) 25	(d) 55
19.	In the graph of the funct	ion $\sqrt{3} \sin x + \cos x$ the maximum	im distance of a point from a	x-axis is

the function $\sqrt{3}$ grap P

	(a) 4	(b) 2	(c) 1	(d) $\sqrt{3}$
20.	The function $f(x) = $	$x + \sin x$ has		[AMU 2000]
	(a) A minimum but minimum	t no maximum	(b)	A maximum but no
	(c) Neither maxim minimum	um nor minimum	(d)	Both maximum and
21.	The point for the cu	urve $y = xe^x$		
	(a) $x = -1$ is minim	tum (b) $x=0$ is minimu	m (c) $x = -1$ is maxim	num (d) $x = 0$ is maximum
22.	36 is factorized int	o two factors in such a way t	that sum of factors is minimu	im, then the factors are
	(a) 2, 18	(b) 9, 4	(c) 3, 12	(d) None of these
23.	The necessary cond	lition to be maximum or min	imum for the function is	
	(a) $f'(x) = 0$ and it is	is sufficient	(b)	f''(x) = 0 and it is sufficient
	(c) $f'(x) = 0$ but it i	s not sufficient	(d)	f'(x) = 0 and $f''(x) = -ve$
2.4	The maximum and	minimum value of the functi	ion $3r^4 - 8r^3 + 12r^2 - 48r + 25$	in the interval [1, 2]
	(a) 16. – 39	(b) - 16. 39	(c) 6. – 9	(d) None of these
25	If $f(x) = 2x^3 = 3x^2 = 1$	$2r+5$ and $r \in [-2, 4]$ then the	e maximum value of function	is at the following value of XIMD DET
23.	(x) = 2x 5x 1	$2x + 5$ and $x \in [2, +]$, then the		
	(d) 2	(0) - 1	(0) - 2	(d) 4
26.	The minimum value	e of $ x + x + \frac{1}{2} + x - 3 + x - 3 $	$\left \frac{-5}{2}\right $ is	
	(a) 0	(b) 2	(c) 4	(d) 6
27.	The maximum valu	e of the function $x^3 + x^2 + x - x^2 + $	4 is	
	(a) 127		(b) 4	
	(c) Does not have a	a maximum value	(d) None of these	
28.	The function $x^5 - 5$	$x^4 + 5x^3 - 10$ has a maximum	when $x =$	
	(a) 3	(b) 2	(C) 1	(d) o
29.	If $x - 2y = 4$, the mi	nimum value of <i>xy</i> is		[UPSEAT 2003]
	(a) – 2	(b) 2	(c) 0	(d) – 3
30.	The minimum value	e of $x^{2} + \frac{1}{1+x^{2}}$ is at		[UPSEAT 2003]
	(a) $x = 0$	(b) $x = 1$	(c) $x = 4$	(d) $x = 3$
31.	The maximum and	minimum value of the functi	ion $ \sin 4x + 3 $ are	
	(a) 1, 2	(b) 4, 2	(c) 2, 4	(d) - 1, 1
32.	The maximum valu	e of function $x^3 - 12x^2 + 36x - 36x + $	+17 in the interval [1, 10] is	
	(a) 17	(b) 177	(c) 77	(d) None of these
33.	Let $f(x) = (x - p)^2 + (x - p)^2$	$(x-q)^2 + (x-r)^2$. Then $f(x)$ has	a minimum at $x = \lambda$, where	λ is equal to
	(a) $\frac{p+q+r}{3}$	(b) $3\sqrt{pqr}$	(c) $\frac{3}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$	(d) None of these
34.	The function $x^2 \log x$	x in the interval (1, e) has		
	(a) A point of maxi	imum	(b) A point of mini	mum
	(c) Points of maxir	num as well as of minimum	(d) Neither a point	of maximum nor minimum
35.	The two parts of 10	00 for which the sum of doub	ole of first and square of seco	nd part is minimum, are
	(a) 50, 50	(b) 99.1	(c) 08 2	(d) None of these
	(4) 50, 50	(-) 55;-	(c) 90, 2	(u) None of these

Get More Learning Materials Here : 📕

			App	lication of Derivatives 213
	(a) Isosceles triangle	(b) Right angled triangle	(c) Equilateral	(d) None of these
37.	The function $x^5 - 5x^4 + 5x^5$	$^{3}-1$ is		
	(a) Maximum at $x = 3$ and	d minimum at $x = 1$	(b) Minimum at $x = 1$	
	(c) Neither maximum no	r minimum at $x = 0$	(d) Maximum at $x = 0$	
38.	If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + b^2 \sin^2 \theta$	$\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$ then the d	ifference between the maxi	mum and minimum values of
	u^2 is given by			
	2	$\sqrt{2}$	2	[AIEEE 2004]
	(a) $(a-b)^2$	(b) $2\sqrt{a^2+b^2}$	(c) $(a+b)^2$	(d) $2(a^2+b^2)$
39.	The minimum value of $2x$	x + 3y, when $xy = 6$, is		[MP PET 2003]
	(a) 12 The need number worker	(b) 9	(c) 8	(d) 6
40.	2000; AIEEE 2003]	added to its inverse gives the	minimum value of the sum	at x equal to [Rajasthan PET
	(a) - 2	(b) 2	(c) 1	(d) - 1
41.	$x + \frac{1}{x}$ is maximum at			[Rajasthan PET 1991]
	x	(b) $r = -1$	(c) $r = 2$	(d) $r = -2$
12	$f(x) = (1 - x)^2 e^x$ is minimum	n at	(c) x = 2	(u) x - 2
42.	(a) $r = 1$	(b) $r = -1$	(c) $x = 0$	(d) $r = 2$
12	The maximum value of the maximum value f	(b) $x = 1^{3}$	$(\mathbf{c}) \mathbf{x} = \mathbf{c}$	$\begin{bmatrix} \mathbf{R} \\ \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{R} \end{bmatrix}$
1 3.	(a) 0	(b) 50	(c) 54	(d) 70
		Advance	e Level	
11.	Let $f(x) = \begin{cases} x & , & 0 \leq x \leq 2 \end{cases}$	then at $r = 0 f$ has		[IIT Screening 2000]
77.	$\int dx = 0$, choir at $x = 0$ f had		
	(a) A local maximum	(b) No local maximum	(c) A local minimum	(d) No extremum
45.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every r	real number <i>x</i> , then the minim	um value of f	
	(a) Does not exist becaus	e f is unbounded	(b) Is not attained even t	hough f is bounded
	(c) Is equal to 1		(d) Is equal to -1	
46.	The number of values of 2	where the function $f(x) = \cos x$	$x + \cos(\sqrt{2}x)$ attains its maxim	mum is
	(a) 0	(b) 1	(c) 2	(d) Infinite
47 .	On the interval [0, 1] the	function $x^{25}(1-x)^{75}$ takes its r	naximum value at the point	[IIT 1995]
	(a) 0	(b) $\frac{1}{-}$	(c) $\frac{1}{2}$	(d) $\frac{1}{-}$
		2	3	4
48.	x ^x has a stationary point	at		
	(a) $x = e$	(b) $x = \frac{1}{e}$	(c) $x = 1$	(d) $x = \sqrt{e}$
<i>1</i> 0.	A minimum value of $\int_{-\infty}^{x} te^{-t}$	$-t^2 dt$ is		
45.				
	(a) 1	(b) 2	(c) 3	(d) 0
50.	The sum of two numbers	is fixed. Then its multiplication	on is maximum, when	1 0
	(a) Each number is half o	of the sum	(b)	Each number is $\frac{1}{3}$ and $\frac{2}{3}$
	respectively of the sum			

CLICK HERE

Get More Learning Materials Here : 📕

2 14	Application of Derivativ	ves		
	(c) Each number is $\frac{1}{4}$ and	$d \frac{3}{4}$ respectively of the sum	(d) None of these	
51.	The value of <i>a</i> so that the value, is	sum of the squares of the roc	ots of the equation $x^2 - (a - 2)$	(x-a+1=0) assume the least
	(a) 2	(b) 1	(c) 3	(d) o
52.	If from a wire of length 36	5 <i>metre</i> a rectangle of greatest	area is made, then its two a	adjacent sides in <i>metre</i> are[MP PE '
	(a) 6, 12	(b) 9, 9	(c) 10, 8	(d) 13, 5
53.	The maximum value of x^4	e^{-x^2} is		
	(a) e^2	(b) e^{-2}	(c) $12e^{-2}$	(d) $4e^{-2}$
54.	One maximum point of sir 2000]	$a^p x \cos^q x$ is		[Rajasthan PET 1997; AMU
	(a) $x = \tan^{-1} \sqrt{(p/q)}$	(b) $x = \tan^{-1} \sqrt{(q/p)}$	(c) $x = \tan^{-1}(p/q)$	(d) $x = \tan^{-1}(q/p)$
55.	20 is divided into two p maximum. The parts are	parts so that product of cube	e of one quantity and squa	are of the other quantity is
	-			[Rajasthan PET 1997]
	(a) 10, 10	(b) 16, 4	(c) 8, 12	(d) 12, 8
56.	The minimum value of $e^{(2)}$	$x^{2}-2x+1)\sin^{2}x$ is		[Rorkee 1998]
	(a) <i>e</i>	(b) $\frac{1}{e}$	(c) 1	(d) 0
57.	Divide 20 into two parts s are [DCE 1999]	such that the product of one pa	art and the cube of the other	r is maximum. The two parts
	(a) (10, 10)	(b) (5, 15)	(c) (13, 7)	(d) None of these
58.	The minimum value of exp	$0(2 + \sqrt{3}\cos x + \sin x)$ is		[AMU 1999]
	(a) exp(2)	(b) $\exp(2-\sqrt{3})$	(c) exp(4)	(d) 1
59.	The minimum value of $\frac{\log x}{x}$	$\frac{x}{2}$ in the interval [2, ∞)		[Roorkee 1999]
	(a) Is $\frac{\log 2}{2}$	(b) Is zero	(c) Is $\frac{1}{e}$	(d) Does not exist
60.	The function $f(x) = ax + \frac{b}{x}$,	a, b, x > 0 takes on the least value	ue at <i>x</i> equal to	[AMU 2000]
	(a) <i>b</i>	(b) \sqrt{a}	(c) \sqrt{b}	(d) $\sqrt{b/a}$
61.	The area of a rectangle of	given perimeter is maximum,	when ratio of its length and	l breadth is
	(a) 2: 1	(b) 3:2	(c) 4:3	(d) 1:1
62.	The denominator of a fra number is	ction number is greater than	16 of the square of numer	ator, then least value of the
				[Rajasthan PET 2000]
	(a) $\frac{-1}{4}$	(b) $\frac{-1}{8}$	(c) $\frac{1}{12}$	(d) $\frac{1}{16}$
63.	If for a function $f(x)$, $f'(a)$	= 0, f''(a) = 0, f'''(a) > 0, then at a	x = a, $f(x)$ is	[MP PET 1994]
	(a) Minimum	(b) Maximum	(c) Not an extreme points	(d) Extreme point
64.	The least value of the sum	of any positive real number a	nd its reciprocal is	[MP PET 1994]
	(a) 1	(b) 2	(c) 3	(d) 4

Get More Learning Materials Here : 📕

65.	If x is real, then greatest	and least values of $\frac{x^2 - x + 1}{x^2 + x + 1}$	are	[Rajasthan PET
	1999; AMU 1999; UPSEAT 2	2002]		
	(a) 3, $-\frac{1}{2}$	(b) 3, $\frac{1}{3}$	(c) - 3, $-\frac{1}{3}$	(d) None of these
66.	A wire of constant length (a) Circle	i is given. In which shape it sh (b) Square	nould be bent to surround ma (c) Both (a) and (b)	aximum area (d) Neither (a) nor (b)
67.	The function $x\sqrt{1-x^2}$, $(x > x)$	>0) has		
	(a) A local maxima (c) Neither a local maxin	na nor a local minima	(b) A local minima (d) None of these	
68.	If $x + y = 16$ and $x^2 + y^2$ i	s minimum, the value of x and	l y are	
	(a) 3, 13	(b) 4, 12	(c) 6, 10	(d) 8, 8
69.	The area of a rectangle w	vill be maximum for the given	perimeter. When rectangle	is a
	(a) Parallelogram	(b) Trapezium	(c) Square	(d) None of these
7 0.	Local maximum value of	the function $\frac{\log x}{x}$ is		
	[MNR 19	984; Rajasthan PET 1997, 2002;	DCE 2002; Karnataka CET 200	0; UPSEAT 2001; MP PET 2002]
	(a) <i>e</i>	(b) 1	(c) $\frac{1}{e}$	(d) 2e
71.	Local maximum and loca	l minimum values of the funct	tion $(x-1)(x+2)^2$ are	
	(a) - 4, 0	(b) 0, - 4	(c) 4,0	(d) None of these
72.	If $f(x) = 2x^3 - 21x^2 + 36 - 36$	0 , then which one of the follo	wing is correct	
	(a) $f(x)$ has minimum at	<i>x</i> = 1	(b)	f(x) has maximum at $x = 6$
	(c) $f(x)$ has maximum at	x = 1	(d) $f(x)$ has no maxima of	r minima
73.	If sum of two numbers is	3, then maximum value of the	e product of first and the squ	are of second is
	(a) 4 If $f(x) = x^2 + 2hx + 2x^2$ and	(D) 3 $a(x) = x^2 + 2xy + b^2$ such that	(c) 2 min $f(x)$ > max $g(x)$ then the	(0) 1
74.	$\prod f(x) = x + 2bx + 2c$ and	g(x) = -x - 2cx + b Such that	$f(x) > \max_{x \in \mathcal{X}} g(x)$, then the	[IIT Screening 2002]
	(a) No real value of b and	d c(b) $0 < c < b\sqrt{2}$	(c) $ c < b \sqrt{2}$	(d) $ c > b \sqrt{2}$
75.	The minimum value of [((5 + x)(2 + x)]/[1 + x] for non-negative	ative real x is	
/3	(a) 12	(b) 1	(c) 9	(d) 8
-6	Let $f(x) = \int_{-\infty}^{x} \cos t dt x = 0$ t	hop $f(x)$ hoc		
70.	Let $f(x) = \int_0^\infty \frac{dt}{t}, x > 0$ t	f(x) has		[Haryana CEE 2002]
	(a) Maxima when $n = -2$,	-4,-6	(b) Maxima $n = -1, -3, -5,$	
	(c) Minima when $n = 0, 2, 3$	4,	(d) Minima when $n = 1, 3, 5$	5,
77.	The function $f(x) = 2x^3 - 3$	$3x^2 - 12x + 4$ has		[DCE 2002]
	(a) No maxima and mini	ma	(b)	One maximum and one
	minimum (c) Two maxima		(d) Two minima	
		.,	(a) i wo minina	
78.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then	its maximum value is		[Rajasthan PET 2002]
	(a) $\frac{4}{3}$	(b) $\frac{2}{3}$	(c) 1	(d) $\frac{3}{4}$
	5	5		T

79. If *PQ* and *PR* are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is

CLICK HERE

				[Kerala (Engg.) 2002]
	(a) <i>π</i>	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$
80.	If $ab = 2a + 3b, a > 0, b > 0$ the	nen the minimum value of <i>ab</i> i	is	[Orissa JEE 2002]
	(a) 12	(b) 24	(c) $\frac{1}{4}$	(d) None of these
81.	The perimeter of a sector	is p . The area of the sector is	maximum when its radius is	S [Karnataka CET 2002]
	(a) \sqrt{p}	(b) $\frac{1}{\sqrt{n}}$	(c) $\frac{p}{2}$	(d) $\frac{p}{4}$
82.	The maximum area of the	rectangle that can be inscribe	ed in a circle of radius <i>r</i> is	[EAMCET 1994]
	(a) πr^2	(b) <i>r</i> ²	(c) $\frac{\pi r r^2}{4}$	(d) $2r^2$
83.	If $f(x) = \begin{cases} 3x^2 + 12x - 1 & , & -1 \\ 37 - x & , & 2 \end{cases}$	$1 \le x \le 2$, then $< x \le 3$,	4	[IIT 1993]
	(a) $f(x)$ is increasing [-1,	2] (b) $f(x)$ is continuous in [-	1,3] (c)	f(x) is maximum at $x = 2$ (d)
84.	If $f'(x) = (x-a)^{2n}(x-b)^{2p+1}$ v	when <i>n</i> and <i>p</i> are positive integrated	gers, then	
	(a) $x = a$ is a point of mir maximum	nimum	(b)	x = a is a point of
85.	(c) $x = a$ is not a point o <i>N</i> characters of informative time is $\alpha + \beta x^2$ seconds, α	f maximum or minimum ion are held on magnetic tap α and β are constants. The o	(d) None of these e, in batches of x character ptical value of x for fast proc	s each, the batch processing
	(a) $\frac{\alpha}{\beta}$	(b) $\frac{\beta}{\alpha}$	(c) $\sqrt{\frac{\alpha}{\beta}}$	(d) $\sqrt{\frac{\beta}{\alpha}}$
86.	If $f(x) = \sin^6 x + \cos^6 x$, then	L		
	(a) $f(x) \le 1$	(b) $f(x) \le 2$	(c) $f(x) > \frac{1}{4}$	(d) $f(x) > \frac{1}{8}$
87.	The maximum and minim	um values of $y = \frac{ax^2 + 2bx + c}{Ax^2 + 2Bx + C}$	are those for which	
	(a) $ax^2 + 2bx + c - y(Ax^2 + 2bx)$	Bx + C) is equal to zero	(b) $ax^2 + 2bx + c - y(Ax^2 + 2E)$	Bx + C) is a perfect square
	(c) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} \neq 0$		(d) None of these	
88.	A differentiable function	f(x) has a relative minimum	at $x = 0$, then the function	y = f(x) + ax + b has a relative
	minimum at $x = 0$ for			
89.	(a) All a and all b An isosceles triangle of f	(b) All <i>b</i> if $a = 0$ vertical angle 2θ is inscribe	(c) All $b > 0$ and in a circle of radius a .	(d) All $a > 0$ Then area of the triangle is
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
90.	The greatest value of the	function $f(x) = \frac{\sin 2x}{\sin\left(x + \frac{\pi}{4}\right)}$ on the	the interval $\left[0, \frac{\pi}{2}\right]$ is	
	(a) $\frac{1}{\sqrt{2}}$	(b) √2	(c) 1	(d) $-\sqrt{2}$
91.	The longest distance of th	e point (a, 0) from the curve	$2x^2 + y^2 - 2x = 0$, is given by	
	(a) $\sqrt{1-2a+a^2}$	(b) $\sqrt{1+2a+2a^2}$	(c) $\sqrt{1+2a-a^2}$	(d) $\sqrt{1-2a+2a^2}$

CLICK HERE

(»

🕀 www.studentbro.in

www.studentbro.in

92.	The function $f(x) = \int_{1}^{x} \{2(t-1)\}$	$(t-2)^3 + 3(t-1)^2(t-2)^2 dt$ attains	its maximum at $x =$										
	(a) 1	(b) 2	(c) 3	(d) 4									
93.	If the function $f(x) = x^3 + 3(x)$	$(a-7)x^2 + 3(a^2-9)x - 1$ has a pos	itive point of maximum, the	n									
	(a) $a \in (3,\infty) \cup (-\infty, -3)$	(b) $a \in (-\infty, -3) \cup \left(3, \frac{29}{7}\right)$	(c) (-∞,7)	(d) $\left(-\infty,\frac{29}{7}\right)$									
94.	The minimum value of $\left(1 + \right)$	$\frac{1}{\sin^n \alpha} \left(1 + \frac{1}{\cos^n \alpha} \right)$ is											
	(a) 1	(b) 2	(c) $(1+2^{n/2})^2$	(d) None of these									
95.	A cubic $f(x)$ vanishes a	t $x = -2$ and has relative	minimum/maximum at <i>x</i>	$=-1$ and $x = \frac{1}{3}$ such that									
	$\int_{-1}^{1} f(x) dx = \frac{14}{3}$. Then $f(x)$ is												
	(a) $x^3 + x^2 - x$	(b) $x^3 + x^2 - x + 1$	(c) $x^3 + x^2 - x + 2$	(d) $x^3 + x^2 - x - 2$									
96.	If $A > 0, B > 0$ and $A + B = \frac{\pi}{3}$, then the maximum value of	tan A tan B is										
	(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{1}{3}$	(c) 3	(d) $\sqrt{3}$									
97.	Total number of parallel ta	angents of $f_1(x) = x^2 - x + 1$ and	$x^{3} - x^{2} - 2x + 1$ is equal to										
	(a) 2	(b) 3	(c) 4	(d) None of these									
98.	Function $f(x) \neq px - q +r x$	(p>0,q>0,r>0) attains its m	ninimum value only at one p	oint, if									
	(a) $p \neq q$	(b) $q \neq r$	(c) $r \neq p$	(d) $p = q = r$									
99.	The height of right circular	r cylinder of maximum volum	e inscribed in a sphere of ra	dius a is									
	(a) $\frac{a}{\sqrt{3}}$	(b) $\sqrt{3}a$	(c) $\frac{2a}{\sqrt{3}}$	(d) $2\sqrt{3}a$									
100.	A line is drawn through a	fixed point (<i>a</i> , <i>b</i>), $(a > 0, b > 0)$	to meet the positive direct	ion of the coordinate axes in									
	<i>P,Q</i> respectively. The minit	mum value of $OP + OQ$ is											
	(a) $\sqrt{a} + \sqrt{b}$	(b) $(\sqrt{a} + \sqrt{b})^2$	(c) $(\sqrt{a} + \sqrt{b})^3$	(d) None of these									
101.	For the curve $\frac{C^4}{r^2} = \frac{a^2}{\sin^2 \theta} +$	$\frac{b^2}{\cos^2\theta}$, the maximum value of	r is										
	(a) $\frac{c^2}{a+b}$	(b) $\frac{a+b}{c^2}$	(c) $\frac{c^2}{a-b}$	(d) $c^2(a+b)$									
102.	The coordinates of a point	situated on the curve $4x^2 + a^2$	$y^2 = 4a^2(4 < a^2 < 8)$, which ar	e at maximum distance from									
	the point (0, - 2) is												
	(a) (<i>a</i> , 0)	(b) $(2a, -4)$	(c) (0, 2)	(d) None of these									
103.	For what value of <i>k</i> , the fu	nction: $f(x) = kx^2 + \frac{2k^2 - 81}{2}x - 1$	2, is maximum at $x = \frac{9}{4}$										
	(a) $\frac{9}{2}$	(b) -9	(c) $\frac{-9}{2}$	(d) 9									
104.	If $\alpha < \beta$, then correct state	ement is											
	(a) $\alpha - \sin \alpha > \beta - \sin \beta$	(b) $\alpha - \sin \alpha < \beta - \sin \beta$	(c) $\sin \alpha - \alpha < -\sin \beta + \beta$	(d) None of these									
105.	The difference between tw	o numbers is a if their produc	ct is minimum, then number	are									
	(a) $\frac{-a}{2}, \frac{a}{2}$	(b) <i>-a</i> , 2 <i>a</i>	(c) $\frac{-a}{3}, \frac{2a}{3}$	(d) $\frac{-a}{3}, \frac{4a}{3}$									

CLICK HERE

106.	If λ, μ be real numbers s μ is	such that $x^3 - \lambda x^2 + \mu x - 6 = 0$ h	as its	roots real and positiv	e the	en the minimum value of		
	(a) $3 \times \sqrt[3]{36}$	(b) 11	(c)	0	(d)) None of these		
107.	Let the tangent to the grawhere <i>h</i> is a very small performed by the second sec	aph of $y = f(x)$ at the point $x =$ ositive number. Then the ordi	a be nate	parallel to the <i>x</i> -axis, of the point is	let ƒ	f'(a-h) > 0 and $f'(a+h) < 0$,		
	(a) A maximum		(b)	A minimum				
108.	(c) Both a maximum and If $a > b > 0$, the minimum	a minimum value of $a \sec \theta - b \tan \theta$ is	(d)	Neither a maximum n	or a	minimum		
109.	(a) $b-a$ Let the function $f(x)$ be d	(b) $\sqrt{a^2 + b^2}$ efined as below:	(c)	$\sqrt{a^2-b^2}$	(d)) $2\sqrt{a^2-b^2}$		
	$f(x) = \sin^{-1} \lambda + x^2, 0 < x$	<1; $2x, x \ge 1$						
	f(x) can have a minimum	at $x = 1$ if the value of λ is						
	(a) 1	(b) – 1	(c)	0	(d)) None of these		
110.	Let $f(x) = ax^3 + bx^2 + cx + 1$	have extreme at $x = \alpha, \beta$ such	h tha	t $\alpha\beta < 0$ and $f(\alpha).f(\beta) < \beta$	э.т	hen the equation $f(x) = 0$		
	has							
	(a) Three equal real root	S	(b)	Three distinct real roo	ots			
	(c) One positive root if <i>f</i>	$f(\alpha) < 0$ and $f(\beta) > 0$	(d)	One negative root if <i>f</i>	$(\alpha) >$	0 and $f(\beta) < 0$		
111.	Let $f(x) = 1 + 2x^2 + 2^2x^4 + \dots$	+ $2^{10} x^{20}$; Then $f(x)$ has						
	(a) More than one minim	ium (b)	Exa	actly one minimum	(c)) At least one maximum(d)		
112.	Let the function $f(x)$ be d	efined as follows:						
	$f(x) = x^3 + x^2 - 10x, -1$	$\leq x < 0$						
	$\cos x, \ 0 \le x < \frac{\pi}{2}; \ 1 + \sin x$	in x , $\frac{\pi}{2} \le x \le \pi$						
	Then $f(x)$ has							
	(a) A local minimum at x	$x = \frac{\pi}{2}$		(b)	(b) A local maximum at x			
	(c) An absolute minimum $x = \pi$	h at $x = -1$		(d)	An	absolute maximum at		
113.	Two part of 64 such that	the sum of their cubes is mini	imum	will be				
	(a) 44, 20	(b) 16, 48	(c)	32, 32	(d)) 50, 14		
114.	If x be real then the minin	mum value of $f(x) = 3^{n+1} + 3^{n+1}$	⁷ 1S	2		7		
	(a) 2	(b) 6	(c)	$\frac{2}{3}$	(d)	$) \frac{7}{9}$		
115.	The minimum value of $e^{(2)}$	$2x^2 - 2x - 1)\sin^2 x$ is				[Roorkee 1998]		
	(a) <i>e</i>	(b) $\frac{1}{a}$	(c)	1	(d)) 0		
116.	The semi-vertical angle o	f a right circular cone of give	n slan	t height and maximum	volı	ıme is		
	(a) $\tan^{-1} 2$	(b) $\tan^{-1}\sqrt{2}$	(c)	$\tan^{-1} 1/2$	(d)) $\tan^{-1} 1/\sqrt{2}$		
117.	If $0 < a < x$, then the minim	mum value of $\log_a x + \log_a a$ is				[IIT 1984]		
	(a) 2	(b) - 2	(c)	2a	(d)) Does not exist		
118.	Which point of the parabo	ola $y = x^2$ is nearest to the point	int (3	, 0)				
	(a) (- 1, 1)	(b) (1, 1)	(c)	(2, 4)	(d)) (-2,4)		
119.	The point of inflexion for	the curve $y = x^{5/2}$ is				[Rajasthan PET 1989, 1992]		

Get More Learning Materials Here : 📕

CLICK HERE

			Application of Derivatives	s 219				
(a) (1, 1)	(b) (0, 0)	(c) (1, 0)	(d) (0, 1)					

Answer Sheet

$\left(\right)$	Assignment (Basic & Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	a	d	с	a	d	a	b	с	с	b	a	b	С	a	с	a	a	b	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	d	с	a	d	d	с	с	a	a	b	b	a	d	b	с	с	a	a	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	с	a	d	b	d	b	d	a	b	b	d	a	d	с	b	d	d	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	С	b	b	a	a	d	С	с	b	с	a	d	с	a,d	b	a	d	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	d	d	С	с	a,c	b,c	b	a	с	d	a	b	с	с	b	d	d	с	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	
a	с	b	b	a	a	a	с	d	b,c	b	b	с	a	с	b	d	b	b	

